November 21, 2024 UMD Home FabLab AIMLab

NanoCenter Partner Labs include both departmental and individual laboratories in which at least some of the equipment is available to NanoCenter users. Specific training, protocols and authorization for use of the shared equipment are determined by the lab owner(s), while the NanoCenter's scheduler and billing processes support the shared equipment's use. User fees collected by the NanoCenter for the shared equipment are dedicated to its maintenance and upgrades. This NanoCenter Partner Lab arrangement expands the scope and quality of equipment available to the NanoCenter community.

Surface Analysis Center

Principal Investigator: Karen Gaskell
Email: kgaskell@umd.edu
Location: Chemistry 0504, 0505, 0508
Website: https://sac.umd.edu/

The Surface Analysis Center is operated by the Department of Chemistry and Biochemistry, provides access to facilities for x-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and Raman microscopy. The NanoCenter provides some financial support for the lab, and in addition the AFM and Raman instruments are coordinated through the NanoCenter's systems.

Robotics Realization Lab

Director: Ivan Penskiy
Email: ipenskiy@umd.edu
Location: 0301/0303 Engineering Annex
Website: https://facilities.robotics.umd.edu/rrl.html

The Robot Realization Laboratory focuses on designing, building, and testing novel robot designs. This is a student centered space that also supports the NSF REU Site program at the University of Maryland focused on Miniature Robotics.This lab uses the scheduler software, invented by the Nanocenter, to manage its instruments, which include a humanoid robotic platform, a motion-capture system, and two 3-D printers.

ALD NanoStructures Lab (ANSLab)

Principal Investigator: Gary Rubloff
Email: rubloff@umd.edu
Location: 0202 IREAP
Website: https://rubloffgroup.umd.edu/ald-nanostructures-laboratory-anslab/

The ANSLab combines atomic layer deposition (ALD) and evaporation capabilities for materials synthesis, together with in-situ surface analysis and glove box facilities for battery assembly, test, and disassembly. It includes two commercial ALD systems, Ultratech Fiji's, each running both thermal and plasma ALD, accompanied by capability for metal and Li evaporation and ion bombardment. The ALD systems can also exploit in-situ, real-time sensing, both spectroscopic ellipsometry (Woollam M2000) of film growth and characterization, and mass spectroscopy (MKS Instruments) of desorbing reaction products. All these components are UHV-based and connected through load-locks, transfer chambers, and a glove box enabling electrochemical and other operations, all without contamination from atmospheric exposure. The Kratos surface analysis system provides XPS spectroscopy and imaging, UPS, scanning Auger mapping, and ion beam depth profiling.

While ANSLab supports an ongoing research program in energy storage and related areas, its facilities are made available to selected other groups and users under specific circumstances.We welcome discussions about possible collaborations consistent with the ongoing use of the lab, and in some cases where effort is modest we can also support some service work. Fees are generally consistent with NanoCenter fee structures and may include fees for staff assistance.

Tissue Engineering and Biomaterials Lab

Principal Investigator: John Fisher
Email: jpfisher@umd.edu
Location: 3240 Kim Engineering Building
Website: https://tebl.umd.edu

The Tissue Engineering and Biomaterials Laboratory uses the principles of both engineering and life sciences to develop biomaterials that improve the quality of life of ill or injured patients. The lab is used to fabricate polymers into easily implantable biomaterials by first synthesizing novel hydrolytically degradable biomaterials. Molecular and cellular biology principles are then incorporated to understand the interaction of cells, tissues, and higher life systems with these novel biomaterials. Areas of focus in the lab include the study of biomaterials for the delivery of therapeutics, scaffolds for orthopedic tissue engineering applications, and the interaction of biomaterials and tissues. The NanoCenter manages the shared use of the Perfactory 4 Mini with ERM, a high-resolution three-dimensional printer, which uses Direct Light Projection technology to photocrosslink resins.

Chungshen Wang Lab

Principal Investigator: Chungshen Wang
Email: cswang@umd.edu
Location: CSWangLab, 4128 Chemistry
Website: https://cswang.umd.edu/

The Wang Group's research activities focus on four areas: Li-ion batteries, Na-ion batteries, alkaline fuel cells, and electroanalytical techniques, covering topics from fundamental electrochemistry and materials synthesis to electrochemical devices. Current projects include novel electroanalytical techniques for phase transformation electrodes, virus enabled anodes for Li-ion batteries, scaffold Si-based anodes for Li-ion batteries, synthesis of alkaline anion exchange membranes (AAEMs) for fuel cell and metal-air battery applications, and addressing the challenges associated with the development of high energy density Li-S, Na-S, and Li-air batteries. The NanoCenter manages the shared use of the Battery Assembly Glove Box, which is dedicated to lithium battery assembly.

Environmental Engineering Laboratories

Principal Investigator: Marya Anderson
Email: morf@umd.edu
Location: Environmental Engineering Laboratories, 1138 Glenn L. Martin Hall
Website: https://www.enviroeng.umd.edu/

The Environmental Engineering Laboratories are part of the Department of Civil and Environmental Engineering at the University of Maryland. Our research supports the idea that fundamental environmental research will serve as the basis for solving the problems faced by future generations. Practical engineering research is necessary to solve current environmental problems. The labs function to support analysis of environmental samples which focus on the fate and processes involved in three main areas of research: organic pollutants, inorganic pollutants, and environmental microbiology.

Functional Macromolecular Laboratory

Principal Investigator: Dr. Peter Kofinas
Email: kofinas@umd.edu
Location: Functional Macromolecular Laboratory, 1211 Jeong H. Kim Engineering Bldg.
Website: https://www.fml.umd.edu/

The Functional Macromolecular Laboratory at the University of Maryland, College Park, focuses on the synthesis, characterization and processing of novel polymer-based nanostructured systems used in a variety of technological fields, ranging from medicine and pharmaceuticals to energy storage and microelectronics. The lab features a comprehensive set of characterization equipment for polymer mechanical, thermal, dielectric, conductive properties. Current projects include the design of polymers, hydrogels, and composites for use in surgery, intelligent food packaging, electrolytes for flexible batteries, and stretchable electronics.

Nanochemistry Lab

Principal Investigator: YuHuang Wang
Email: yhw@umd.edu
Location: CHEM 3117

The Nanochemistry Lab houses a suite of state-of- the-art research tools and instrument for precision nanofabrication and synthesis as well as for optical, electrical and mechanical characterization of carbon nanomaterials. Installed instruments include a custom-built hyperspectral imaging system featuring super-resolution capabilities in the short-wave infrared, a Horiba Jobin Yvon NanoLog spectrofluorometer equipped with a liquid-N 2 cooled InGaAs array, a Perkin Elmer Lambda 1050 UV-vis- NIR spectrophotometer equipped with a broadband InGaAs detector, and a 150 mm integrating sphere. We welcome discussions about possible collaborations, and in some cases where effort is reasonable we may make selected research tools available to the community through the NanoCenter’s Partner Lab Program.

NanoMass Core

Principal Investigator: Associate Professor Peter Nemes
Email: nemes@umd.edu
Location: CHEM 1517/1519
Website: https://blog.umd.edu/nemes/nanomass/
Developing A Single-Neuron Protein Mass Analyzer

Bioinspired Advanced Manufacturing (BAM) Lab

Principal Investigator: Ryan Sochol
Email: rsochol@umd.edu
Location: 2152 Glenn Martin Hall
Website: https://bam.umd.edu/

The Bioinspired Advanced Manufacturing (BAM) Laboratory pioneers micro/nanoscale additive manufacturing or “3D printing” strategies that advance the life sciences and biomedical applications to, ultimately, benefit human health and well-being. These efforts rely primarily on “Direct Laser Writing” or “Laser Lithography”—a two-photon polymerization (2PP)-based 3D manufacturing technique capable of feature resolutions on the order of 100 nanometers.

The NanoCenter manages the shared use of the UpNano NanoOne 1000 3D Microfabrication System—the fastest high-resolution 3D printing system on the market, with scan speeds of ≥1,000 mm/s and an unmatched throughput of >450 mm³ per hour—as well as a: (i) Hitachi TM4000Plus Table-Top Scanning Electron Microscope (SEM) with Energy-Dispersive X-Ray Spectroscopy, (ii) ZEISS Axio Observer Z1 Inverted Microscope, and (iii) Tergeo Plasma Cleaner (Automatic Tabletop Plasma Cleaner/Etcher) from PIE Scientific.

Colleges A. James Clark School of Engineering
The College of Computer, Mathematical, and Natural Sciences

Communicate Join Email List
Contact Us
Follow us on TwitterTwitter logo

Links Privacy Policy
Sitemap
RSS

Copyright The University of Maryland University of Maryland
2004-2024