November 22, 2024 UMD Home FabLab AIMLab



The University of Maryland (UMD) and UMD start-up, HighT-Tech, announced receipt of a total $5.6 million in funding from the U.S. Department of Energy Advanced Research Projects Agency-Energy (ARPA-E). The funding is part of the ARPA-E OPEN 2021 program, which prioritizes funding technologies that support novel approaches to clean energy challenges. The selected projects will advance energy storage and catalysis technology respectively.

“I’m thrilled and thankful to have received this funding, which my team will use to develop further the cellulose batteries and high entropy catalyst” said Liangbing Hu, Herbert Rabin Distinguished Professor of Materials Science and Engineering (MSE) at UMD, Director of the Center for Materials Innovation, and Founder of both HighT-Tech and CelluCell. “We hope to open new windows of applications in these technologies.” 

The UMD project, “Fast-Charging, Solid-State, Roll-to-Roll Processed Li Metal Batteries Enabled by Intercalated Ions in Cellulose Molecular Channels,” was endowed with $2.6 million. Hu’s team aims to fabricate fast-charging batteries in which the electrolyte comprises a cellulose fiber-based ion conductor. The cellulose-based ion conductor overcomes the gap from current solid-state electrolytes to solid-state batteries due to the use of natural materials, which are easy to process and are compatible with conventional coating processes. This approach could enable high conductivity at room temperature, high energy density, and roll-to-roll manufacturing of nano-paper batteries at a low cost to consumers.

HighT-Tech’s project – “Scalable Manufacturing of High-Entropy Alloy Catalysts for Ammonia Oxidation” – was granted $3.0 million to create scalable manufacturing processes of high-entropy alloy (HEA) catalysts for ammonia oxidation with enhanced catalytic activity, selectivity and stability. The HEA catalysts could reduce the use of precious metals, enhance energy efficiency, and improve the economics and environmental impact of chemical industries. This technology includes scalable high-temperature thermal shock manufacturing of uniformly mixed multi-metallic nanoparticle HEA catalysts; reduced precious metal contents by greater than 50% and reduced the operating temperature; and enhanced selectivity to desired reaction products and extended catalyst lifetime. What’s more, these processes could enable ~$3 million in savings of annual operating costs in a typical nitric acid plant, and help to promote sustainability in U.S. energy and chemical industries and manufacturing.

The addition of these two awards bring UMD's total to 35 ARPA-E awards, totaling nearly $80 million in funding since ARPA-E's inception.

ABOUT DOE’S ARPA-E PROGRAM
Since its founding in 2009, ARPA-E has provided $2.93 billion in research and development funding and projects have attracted more than $7.6 billion in private sector follow-on funding to commercialize clean energy technologies. OPEN 2021 is ARPA-E’s latest installment of the OPEN program. The first four iterations — 2009, 2012, 2015 and 2018 — awarded more than $600 million in funding to 225 projects working to achieve breakthroughs in commercializing a variety of energy solutions, including in the development of transformative solar, geothermal, batteries, biofuels and advanced surface coating technologies.

ABOUT HighT-TECH
Founded in 2019 to commercialize transformative technologies from the University of Maryland and Johns Hopkins University, HighT-Tech LLC provides disruptive materials science based technologies derived from the novel shock synthesis method and ultrafast high-temperature sintering (UHS) technique. The team is working to deploy materials with unique properties and unmatched performance for the chemical, energy, transportation and environmental sectors.

For a complete list of Open 2021 Projects, follow this link.



February 16, 2022


«Previous Story  

 

 

Current Headlines

CALCE Receives ULRI Research Award for Thermal Runaway Prevention in Batteries

World Premiere of Video on Battery Safety by Prof. Michael Pecht at OECD

Former MEI2 energy seed grant discusses 3D printing of advanced ceramics

UMD, Partners Receive $31M for Semiconductor Research

Brick by Brick: The Clark School Celebrates LGBTQ+ Engineers

Maryland Engineering and Partners Win $26M to Develop Better HVACR Systems and Fight Climate Change

Researchers’ Battery Breakthrough Improves Performance at Lower Costs

ION honored by federal and state officials

Ghodssi Honored With Gaede-Langmuir Award

Maryland Engineers Recognized with UMD Faculty Honors

 

Colleges A. James Clark School of Engineering
The College of Computer, Mathematical, and Natural Sciences

Communicate Join Email List
Contact Us
Follow us on TwitterTwitter logo

Links Privacy Policy
Sitemap
RSS

Copyright The University of Maryland University of Maryland
2004-2024