June 6, 2020 UMD Home FabLab AIMLab



Graduate student Xiaolong Luo, a Ph.D. student in the Fischell Department of Bioengineering advised by Maryland NanoCenter Director Gary Rubloff (MSE/ECE/ISR), is conducting research on a ?lab-on-a-chip? microsystem for drug development that could lead to a new strategy for antibiotic therapy.

Antibiotic resistance has been an increasing public health concern. However, few new drugs for bacterial pathogenesis have been obtained without addressing this resistance. One target to solve the arduous problem is "quorum sensing" (QS), a newly-discovered communication system among bacterial cells. In QS, bacterial cell communication is mediated by chemical signals that, when the number of cells reaches a "quorum" level, coordinate changes in gene regulation. The capability to intercept and rewire the biosynthesis of signal molecules, and not kill the bacteria directly, opens the door to discover novel antimicrobial drugs that are able to bypass antibiotic resistance.

Luo's research focuses on developing a microscopic drug research platform that can be used to test potential drugs. By placing QS enzymes in a well-controlled microsystem, the communication signal molecules are reproduced and can be further interrogated. Enzymes placed in site-specific locations in the microsystem have shown normal activity. Next, the microscopic platform is used to screen efficient inhibitors, ultimately the antimicrobial drug candidates, to knock down the production of signal molecules for bacterial communication.

Luo, together with collaborators, has demonstrated a unique platform that integrates biologically active enzymes with microfabricated devices. The enabling capability comes from a biological substance, chitosan. Chitosan can be deposited onto the inorganic surface of microdevices per electrical signal, while retaining reactivity to biological components. The demonstrated platform in Luo's research represents an important step in progress toward a "lab-on-a-chip" technology suitable to support drug development and metabolic engineering research.

| Learn more about Xiaolong Luo in this Fischell Department of Bioengineering profile |



January 27, 2009


«Previous Story  

 

 

Current Headlines

Pines: Stand in Solidarity, Unite Against Injustice

Promoting Diversity and Addressing Unconscious Bias

MSE Alum Awarded NSF Graduate Research Fellowship

UMD Researchers Design ‘Open’ Lithium-ion Battery

UMD Research Lab Receives ARO Grant to Investigate Reconfigurable Nanoparticle Assemblies

Two Engineers Among 2020-2021 Distinguished Scholar-Teachers

2020 Undergraduate Honors and Awards

Cleaning Natural Methane for Better Access to Renewable Energy

New, superfast method for ceramic manufacturing could open door to AI-driven materials discovery

Advance made towards next-generation rechargable batteries

 

Colleges A. James Clark School of Engineering
The College of Computer, Mathematical, and Natural Sciences

Communicate Contact Us
Contact the Webmaster
Google+
Follow us on TwitterTwitter logo

Links Privacy Policy
Sitemap
RSS

Copyright The University of Maryland University of Maryland
2004-2020