June 6, 2020 UMD Home FabLab AIMLab


Department of Materials Science and Engineering (MSE) assistant professor John Cumings will serve as the group leader of one of the University of Maryland Energy Frontier Research Center's (EFRC) four research thrusts that seek to substantially improve the storage capacity of lithium ion batteries. Together with co-leader Tom Picraux of Los Alamos National Laboratory, Cumings will lead Thrust B, "Self-Healing Nanostructures for Electrodes," which will explore the use of silicon nanowires in the batteries' anodes.

The University of Maryland was awarded the EFRC designation by the Department of Energy in May. The Center enlists faculty from across campus and collaborators from around the country to address a central goal of using nanotechnology to create new electrical storage technologies that store and deliver more power, charge faster, and will enable us to manufacture smaller, lighter batteries.

Currently, lithium-based batteries do not see widespread use in cars and other machinery for several reasons, including their low discharge (power output) rates, that they are not considered safe enough for highway use, and that some of the materials used to make them have a relatively low level of sustainability. The Maryland EFRC hopes to address these problems.

Cumings and his collaborators will focus on the anode, or energy storage portion, of the battery. The most common storage material for lithium battery anodes is carbon. One lithium atom can be stored for every five or six carbon atoms. If silicon is used in the anode, however, the ratio changes drastically: four lithium atoms for each silicon atom. Unfortunately, simply switching materials isn't enough to create a solution.

"The problem is that when you try to store that much lithium, the silicon expands, and when the lithium is removed, the silicon collapses and crumbles after only a couple of charging cycles," Cumings explains. That's what happens at the micro- and macro-scales, but it may not be the case if the team thinks small. This is because materials' behavior changes at the nanoscale, sometimes so dramatically that the usual rules no longer apply.

"If we can nanostructure the silicon to expand in some dimensions while not in others, it could keep its structure during the cycling of the battery," says Cumings. "Using silicon nanowires is one possible way to realize that?they will be stronger and more flexible."

Scientists have known about the high lithium-capacity of silicon for over thirty years, but it's only now that nanotechnology has caught up enough to make silicon battery electrodes a possibility. Cumings' knowledge of the mechanics and properties of nanoscale structures, combined with his expertise in testing materials in realtime and in situ in transmission electron microscopes (TEM), will help give his group the ability to directly observe the nanowires and record how their properties change before and after lithium insertion.

In addition to Cumings, the EFRC Thrust B team includes Assistant Professor Chunsheng Wang (Department of Chemical and Biomolecular Engineering); Assistant Professor Yuhuang Wang (Department of Chemistry & Biochemistry), Dr. Thomas Picraux (CINT Chief Scientist, Los Alamos National Laboratory), and Professor Mark A. Reed (Departments of Electrical Engineering and Applied Physics, Yale University).

Learn More:

Visit the EFRC web site



Related Articles:
UMERC/Nanocenter Team Named "Energy Frontier" Center
NanoCenter Improves Energy Storage Options
UMD Researchers Design ‘Open’ Lithium-ion Battery
Advance made towards next-generation rechargable batteries
MEI2 leads U.S. side of $18.4M U.S.-Israel Energy Center focused on Energy Storage
New Report Recommends a Path for the Future of Maryland’s Clean Energy Economy
MEI² Receives Two New Innovative Vehicle Technology Awards
Mo Research Group's Solid-State Battery Review Published in Joule
Marina Leite to Give a Plenary Talk at International Conference in Belgium
Maryland Energy Innovation Institute partners with Daegu Gyeongbuk Institute of Science & Technology

August 4, 2009


«Previous Story  

 

 

Current Headlines

Pines: Stand in Solidarity, Unite Against Injustice

Promoting Diversity and Addressing Unconscious Bias

MSE Alum Awarded NSF Graduate Research Fellowship

UMD Researchers Design ‘Open’ Lithium-ion Battery

UMD Research Lab Receives ARO Grant to Investigate Reconfigurable Nanoparticle Assemblies

Two Engineers Among 2020-2021 Distinguished Scholar-Teachers

2020 Undergraduate Honors and Awards

Cleaning Natural Methane for Better Access to Renewable Energy

New, superfast method for ceramic manufacturing could open door to AI-driven materials discovery

Advance made towards next-generation rechargable batteries

 

Colleges A. James Clark School of Engineering
The College of Computer, Mathematical, and Natural Sciences

Communicate Contact Us
Contact the Webmaster
Google+
Follow us on TwitterTwitter logo

Links Privacy Policy
Sitemap
RSS

Copyright The University of Maryland University of Maryland
2004-2020