May 26, 2020 UMD Home FabLab AIMLab


Double-flame burner. Photo by Peter Sunderland/Clark School of Engineering.

Double-flame burner. Photo by Peter Sunderland/Clark School of Engineering.

 

Anyone who has ridden behind a truck belching black exhaust knows the smell and discomfort caused by soot, the airborne carbon particles that result from the incomplete combustion of hydrocarbons such as diesel fuel. Those soot particles remain in the body beyond the moment of discomfort and can lead to lung diseases and other conditions.

Peter Sunderland, assistant professor of fire protection engineering at the University of Maryland's A. James Clark School of Engineering, recently won a National Science Foundation Early Faculty Career Development Award to improve our understanding of how soot is formed and burned. The results of his research can show designers how to build cleaner and more efficient engines for trucks, buses, airplanes and other combustion systems, and reduce pollution that may harm our lungs and our environment.

Surprisingly, soot has been hard to study because of the complex chemistry in flames. Sunderland aims to separate experimentally two overlapping phases of soot production?soot formation and soot oxidation?so each can be more effectively analyzed and measured. This in turn will help engine designers improve the way fuel is injected and burned in engines.

Sunderland is the first to use a double-flame burner to study the chemical reactions that occur when soot oxidizes, or burns away. "In a normal flame, like a candle, soot is formed low in the flame and burns off near the top," Sunderland says. "However there is a lot of overlap, making it difficult to measure the formation and oxidation rates. In this double flame, the upper flame has only soot oxidation, so there is no such overlap and thus the oxidation rates can be measured more accurately."

The burner has two distinct flames. The lower flame is a bright yellow hydrocarbon flame that emits a soot stream. This stream then enters the upper flame, which is a barely visible hydrogen flame. The soot chemistry in the upper flame is simpler and easier to study than in a normal flame.

Soot is made up of big carbon molecules. In some cases, soot is desirable ? it is what lends the yellow color to a candle flame and it is processed into toner used in most printers. It also speeds fire growth and is a very dangerous pollutant that contributes to climate change. Soot is what colors the black exhaust emitted from diesel engines. Tiny soot particles can enter the lungs and bloodstream, leading to cardiovascular disease and lung cancer.

Both graduate and undergraduate students will help Sunderland with this new research, which will be incorporated into the courses that Sunderland teaches. He also will develop a day-long flame laboratory based on this project for high-school students. The Clark School's Department of Fire Protection Engineering has the only accredited undergraduate program of its type in the country.

National Science Foundation Faculty Early Career Development awards support and honor teacher-scholars for integrating outstanding research and education. For more information, visit the NSF web site.

April 28, 2010


«Previous Story  

 

 

Current Headlines

Two Engineers Among 2020-2021 Distinguished Scholar-Teachers

2020 Undergraduate Honors and Awards

Cleaning Natural Methane for Better Access to Renewable Energy

New, superfast method for ceramic manufacturing could open door to AI-driven materials discovery

Advance made towards next-generation rechargable batteries

Become a Contender: Electric Racecar

Terrapin 'Works' Toward Relief Efforts

COVID-19 Engineering Solutions: In the News

Maryland Engineers Open Door to Big New Library of Tiny Nanoparticles

Maryland Engineers Receive Coronavirus Research Seed Fund Awards

 

Colleges A. James Clark School of Engineering
The College of Computer, Mathematical, and Natural Sciences

Communicate Contact Us
Contact the Webmaster
Google+
Follow us on TwitterTwitter logo

Links Privacy Policy
Sitemap
RSS

Copyright The University of Maryland University of Maryland
2004-2020