June 2, 2020 UMD Home FabLab AIMLab


Download the hi-res version of the logo.

Download the hi-res version of the logo.

 

Engineers at the Clark School have re-created the University of Maryland, College Park, logo using fluorescent glowing E. coli bacteria. They assembled the cells using programmable localized hydrogels.

The creation of the University of Maryland logo was a demonstration of the team's ability to use programmable biofabrication to put living cells where they want to. Much of bioengineering is aimed at studying cells and their interactions. By being able to place and maintain live cells in specific locations within a chip, researchers can better understand bacterial infection and antibiotic resistance, and develop new techniques for clinical diagnosis, tissue regeneration, and personalized medicine.

The researchers involved with this project are part of a group called the Maryland Biochip Collaborative, which is focused on understanding and re-engineering the way biomolecules and cells interact so that they can make major contributions to biomedicine and biotechnology. They design microfluidic "chips" on which to place cells and biomolecules in specific locations to be able to "watch" their interactions.

Based at the University of Maryland, College Park, the Biochip Collaborative is made up of researchers from the Fischell Department of Bioengineering, the Department of Materials Science and Engineering, Department of Electrical and Computer Engineering, and the Institute for Systems Research at the A. James Clark School of Engineering on the University of Maryland, College Park, campus; the Institute for Bioscience and Biotechnology Research; and from the School of Pharmacy on the University of Maryland, Baltimore campus. The group is funded by multimillion-dollar grants from the Robert W. Deutsch Foundation, the National Science Foundation and the U.S. Department of Defense.

More Information:

http://www.biochip.umd.edu/

A more technical description of the techniques used for the logo is included in: Yi Cheng, Chen-Yu Tsao, Hsuan-Chen Wu, Xiaolong Luo, Jessica L. Terrell, Jordan Betz, Gregory F. Payne, William E. Bentley, and Gary W. Rubloff. "Electroaddressing Functionalized Polysaccharides as Model Biofilms for Interrogating Cell Signaling." Advanced Functional Materials, published online 29 November 2011. DOI: 10.1002/adfm.201101963 (http://onlinelibrary.wiley.com/doi/10.1002/adfm.201101963/full)



December 13, 2011


«Previous Story  

 

 

Current Headlines

MSE Alum Awarded NSF Graduate Research Fellowship

UMD Researchers Design ‘Open’ Lithium-ion Battery

UMD Research Lab Receives ARO Grant to Investigate Reconfigurable Nanoparticle Assemblies

Two Engineers Among 2020-2021 Distinguished Scholar-Teachers

2020 Undergraduate Honors and Awards

Cleaning Natural Methane for Better Access to Renewable Energy

New, superfast method for ceramic manufacturing could open door to AI-driven materials discovery

Advance made towards next-generation rechargable batteries

Become a Contender: Electric Racecar

Terrapin 'Works' Toward Relief Efforts

 

Colleges A. James Clark School of Engineering
The College of Computer, Mathematical, and Natural Sciences

Communicate Contact Us
Contact the Webmaster
Google+
Follow us on TwitterTwitter logo

Links Privacy Policy
Sitemap
RSS

Copyright The University of Maryland University of Maryland
2004-2020