November 18, 2019 UMD Home FabLab AIMLab


Reprinted from NIST Tech Beat: December 5, 2013

Scientists from Nanostructures for Electrical Energy Storage, a DOE Energy Frontier Research Center headquartered at the University of Maryland, have added something new to a family of engineered, high-tech materials called metal-organic frameworks (MOFs): the ability to conduct electricity. This breakthrough—conductive MOFs—has the potential to make these already remarkable materials even more useful, particularly for detecting gases and toxic substances.

MOFs are three-dimensional crystalline materials with nanoscale pores made up of metal ions linked by various organic molecules. MOFs have huge surface areas, and scientists can easily control the size of their pores and how the pores interact with molecules by tinkering with their chemistries. These characteristics make them ideal for use as catalysts, membranes or sponges for gas storage or for drug delivery, among other applications.

Thousands of new MOF structures are discovered and characterized each year. While they come in a dizzying array of chemistries and structures, none of them conducts electricity well. The NIST/Sandia team developed a method to modify the electrical conductivity of MOF thin films and to control it over six orders of magnitude. Their findings will appear in the journal Science.

"MOFs are typically extremely poor electrical conductors because their constituent building blocks, the organic linkers and the metal ions, don't really talk to each other in terms of electrical conduction," says NIST materials engineer Andrea Centrone. "Our work points to a way of controlling and increasing their conductivity."

The group accomplished this by "infiltrating an insulating MOF with redox-active, conjugated guest molecules."

In other words, they infused and bound electron-sharing molecules into MOF thin films to create a material that is stable in air and approximately a million times more conductive than the unaltered MOF.

"Based on several spectroscopic experiments, we believe that the guest molecules serve two important purposes: they create additional bridges between the metal ions—copper, in this case—and they accept electrical charge," says NIST chemist Veronika Szalai.

According to NIST physicist Paul Haney, who provided some modeling for the experimental data, the arrangement of the guest molecules in the MOF creates a unique conductivity mechanism while preserving the benefits of the porous MOF crystalline structure.

These porous and conductive MOFs may be the first in an entirely new class of materials that could be used for sensing, conformal electronics (electronics that can bend and conform to unusual shapes), and other as-yet-unknown applications.

"Our discovery gives chemists and engineers a whole new degree of freedom to tailor these materials for their technological applications," says Centrone. "I would not be surprised if solar cells could be made using this new class of materials."

A.A. Talin, A. Centrone, A.C. Ford, M.E. Foster,V. Stavila, P. Haney, R.A. Kinney, V. Szalai, F. El Gabaly, H.P. Yoon, F. Léonard and M.D. Allendorf. Tunable electrical conductivity in metal-organic framework thin-film devices. Science Express. Posted online Dec. 5, 2013



December 12, 2013


«Previous Story  

 

 

Current Headlines

ChBE Ph.D. Student Wins Battery500 Young Investigators Award

Clark School Professor Elected 2019 APS Fellows

UMD Graduate Student Kang-Yi Lin Receives 2019 ALD/ALE Award

NSF Awards $1M Grant to UMD Researchers

Ghodssi Receives Senior Faculty Outstanding Research Award

University of Maryland Launches Quantum Technology Center

Mapping Nucleation Kinetics with Nanometer Resolution

MEI² Receives Two New Innovative Vehicle Technology Awards

UMD Hosts 4th Annual Machine Learning Bootcamp and Workshop

UMD Alumna Receives PECASE Award, Highest Honor Given by U.S. Government to Early Career Scientists

 

Colleges A. James Clark School of Engineering
The College of Computer, Mathematical, and Natural Sciences

Communicate Contact Us
Contact the Webmaster
Google+
Follow us on TwitterTwitter logo

Links Privacy Policy
Sitemap
RSS

Copyright The University of Maryland University of Maryland
2004-2019