May 27, 2022 UMD Home FabLab AIMLab


Schematic of the hybrid solid-state composite electrolyte, where ceramic garnet nanofibers function as the reinforcement and lithium-ion–conducting polymer functions as the matrix. The interwelded garnet nanofiber network provides a continuous ion-conducting pathway in the electrolyte membrane.

Schematic of the hybrid solid-state composite electrolyte, where ceramic garnet nanofibers function as the reinforcement and lithium-ion–conducting polymer functions as the matrix. The interwelded garnet nanofiber network provides a continuous ion-conducting pathway in the electrolyte membrane.

 

UMD researchers have developed, for the first time, a flexible, solid-state, ion-conducting membrane based on a 3D Li-ion conducting ceramic nanofiber network. High capacity, high safety, and long lifespan are three of the most important key factors to developing rechargeable lithium batteries for applications including portable electronics and electrical vehicles. 

To develop a safer, higher performing lithium-ion battery, the membrane shows superior thermal stability and electrochemical stability to high voltage, and can replace conventional flammable organic liquid electrolyte systems in lithium-ion batteries.

The full article, “Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries” was published online last week in the Proceeding of the National Academy of Sciences (PNAS).

The research is also featured in NanotechWeb.org, a website from the UK Institute of Physics.



June 16, 2016


«Previous Story  

 

 

Current Headlines

UMD Dedicates IDEA Factory

Engineering at Maryland magazine celebrates the power of philanthropy, impact on students

UMD Inventions of the Year Tackle Grand Challenges

JC Zhao Receives Humboldt Research Award

Maryland Engineering Graduate Programs: Top 10 Public, Four Years in a Row

Safe and Sound

Engineering Faculty Selected for New MPower Seed Grant Funding

International research team sheds light on inner workings of unconventional superconductors

MSE Prof. Liangbing Hu Granted $5.6M in DOE ARPA-E Funding

Brain Freeze: Cryo-FIB-SEM Coming Soon to College Park

 

Colleges A. James Clark School of Engineering
The College of Computer, Mathematical, and Natural Sciences

Communicate Join Email List
Contact Us
Follow us on TwitterTwitter logo

Links Privacy Policy
Sitemap
RSS

Copyright The University of Maryland University of Maryland
2004-2022