March 28, 2024 UMD Home FabLab AIMLab


Superconductivity in the topologically protected surface states of a three-dimensional topological insulator has been predicted to be a promising platform for exploring exotic quantum states such as Majorana fermion excitations. Although previous efforts have focused on the superconducting proximity effect in bilayer structures between a superconductor and a chalcogenide topological insulator, suppressing the conducting bulk contribution and securing high interfacial transparency between a superconductor and a topological insulator have been major experimental bottlenecks to demonstrating induced superconductivity. MSE faculty Ichiro Takeuchi, in collaboration with Richard Greene and Johnpierre Paglione in the Center for Nanophysics and Advanced Materials, have now demonstrated a supercurrent to flow through the surface layer of the topological Kondo insulator material samarium hexaboride (SmB6) via in situ deposition of a superconducting layer on SmB6 thin films. Published in Physical Review X, this study provides a unique insight into the surface state of SmB6, and marks an important stepping stone for pursuing novel quantum phenomena using thin-film topological insulator devices. (Seunghun Lee et al., Physical Review X 6, 031031 (2016))



August 30, 2016


«Previous Story  

 

 

Current Headlines

Paid Internships Available for Summer 2024

Alumna Blasts Into Space

Former FabLab Director, Jim O'Connor, passed away

$15M Federal Grant Awarded to Support Maryland Electric Vehicle Charging Network

UMD Start-Up Ionic Devices Wins Microbattery Design Prize

CALCE Welcomes Dr. Lingxi Kong: New Member of the Battery Research Team

Liangbing Hu Is Key PI of New Energy Earthshot Research Center

New, Innovative UMD Course Teaches In-Demand Skills

Celebrating LGBTQ+ History Month: Resources and Events

Horiuchi is PI for NSF 'ExLENT' experiential learning project

 

Colleges A. James Clark School of Engineering
The College of Computer, Mathematical, and Natural Sciences

Communicate Join Email List
Contact Us
Follow us on TwitterTwitter logo

Links Privacy Policy
Sitemap
RSS

Copyright The University of Maryland University of Maryland
2004-2024