November 12, 2019 UMD Home FabLab AIMLab



Metal-halide perovskite solar cells have reached a high level of efficiency (~23%) over a short period of time, and are cheap to manufacture. However, problem areas remain surrounding the material’s stability under standard environmental conditions (e.g., humidity, oxygen and temperature levels). 

In a perspective recently published in Joule, a University of Maryland research team reviewed recent literature and highlighted the recovery ability of these materials depending on various environmental stressors. The team – led by Materials Science and Engineering (MSE) Assistant Professor, Marina Leite – identifies the potential role of machine learning (ML) techniques to accelerate the commercialization of these materials, and provide a starting framework. John Howard, an MSE gradate research assistant, and Elizabeth Tennyson (MSE Ph.D. ’18, currently a postdoctoral researcher at the University of Cambridge) served as first authors on the resulting research paper.

“Current commercial solar modules are required to retain >80% of their initial efficiency after 25 years,” said Howard. “The most durable perovskite solar cells only last 10,000 hours, underscoring the large gap in stability that exists in current technologies. Our Perspective reinforces the need for researchers to comprehensively study the unique ability of organic-inorganic metal halide perovskites to recover their performance over 100s of cycles to close this divide between lab and market.”

Indeed, machine learning provides a viable way of evaluating the number of combinations between environmental conditions, and building smart monitoring networks, which are unique to this material.

“In the Leite lab, we’re varying one environmental parameter at a time to see if we can predict the optical behavior of the material simply based on the value of said parameter,” Howard said. “For instance, in one set of measurements, we control and track the relative humidity while looking at the material light emission. The next step is to train an ML model to predict future light emission based on only the relative humidity values, and to determine how much data is needed to achieve sufficient accuracy.“

When comparing energy technology, cost is often the deciding factor. Once these stability issues are solved, perovskites can provide a route towards more efficient technology via solar applications.

“As with many fields, the solutions to these issues will build on interdisciplinary research efforts,” Howard continued. “In terms of applications, we envision the deployment of new solar module monitoring systems that measure relevant environmental conditions, and predict performance over the long-term.” 

This research - highlighted on the cover of the February issue of JOULE -  follows a study that was published in the Journal of Physical Chemical Letters.

For additional information:

Howard, J.M., Tennyson, E.M., Neves, B.R.A., and Leite, M.S. “Machine Learning for Perovskite Reap-Rest-Recovery Cycle,” Joule (2018), DOI: 10.1016/j.joule.2018.11.010



Related Articles:
Marina Leite to Give a Plenary Talk at International Conference in Belgium
Leite Lab Combines Experiments and Calculations to Advance the Understanding of Optical Materials
Leite Group Creates Nano-sized Super-absorber, Published in Advanced Optical Materials
Sunbeams at the Nano-scale: the Next Generation of Solar Cells

January 15, 2019


«Previous Story  

 

 

Current Headlines

ChBE Ph.D. Student Wins Battery500 Young Investigators Award

Clark School Professor Elected 2019 APS Fellows

UMD Graduate Student Kang-Yi Lin Receives 2019 ALD/ALE Award

NSF Awards $1M Grant to UMD Researchers

Ghodssi Receives Senior Faculty Outstanding Research Award

University of Maryland Launches Quantum Technology Center

Mapping Nucleation Kinetics with Nanometer Resolution

MEI² Receives Two New Innovative Vehicle Technology Awards

UMD Hosts 4th Annual Machine Learning Bootcamp and Workshop

UMD Alumna Receives PECASE Award, Highest Honor Given by U.S. Government to Early Career Scientists

 

Colleges A. James Clark School of Engineering
The College of Computer, Mathematical, and Natural Sciences

Communicate Contact Us
Contact the Webmaster
Google+
Follow us on TwitterTwitter logo

Links Privacy Policy
Sitemap
RSS

Copyright The University of Maryland University of Maryland
2004-2019