November 22, 2024 UMD Home FabLab AIMLab



At the moment, lithium-ion batteries – commonly used for portable electronics, energy storage systems and electric vehicles – are all the rage. A major challenge to large-scale application of Li-ion batteries is the high cost, in addition to the uneven distribution of lithium resources across the globe – most lithium deposits are found in Argentina, Chile, China, and Australia.  

In the journal Angewandte Chemie, scientists report a high-performance polymer cathode for a sodium (Na)-ion battery that is highly stable, eco-friendly and cheap to produce.

NIBs could easily be the next “big” thing in battery technology as sodium is one of the most abundant elements on earth, and nicely compliments alternative metals, such as magnesium (Mg) and aluminum (Al). Such a successful substitution, however, demands major upgrades in the electrode materials.

To that end, Chunsheng Wang – a professor of Chemical and Biomolecular Engineering (ChBE) at the University of Maryland (UMD) – and his team, along with an international group of collaborators, addressed this problem by introducing polymeric hexaazatrinaphthalene (PHATN), based on an organic compound called pyrazine, as a high-capacity, fast-charging cathode material. When combined with a sodium ion, this cathode outperformed current polymeric and inorganic cathodes in capacity delivery and retention.

“Historically, HATN has had poor stability during cycling, posing major challenges,” said Wang. “We stabilized the material by introducing linkages between the individual molecules forming an organic polymer called polymeric HATN, or PHATN, which offered fast reaction kinetics and high capacities for sodium, aluminum and magnesium ions.”

After assembling the battery, the scientists tested the PHATN cathode by using a highly-concentrated electrolyte, which boasted excellent electrochemical performance. The sodium battery performed up to 3.5V while maintaining a capacity of more than 100 millampere hours per gram even after 50, 000 charge/discharge cycles.

“Fast charging is another major challenge for the application of rechargeable batteries in electric vehicles.” said Chao Luo, George Mason University Chemistry Professor and co-first author on the paper. “PHATN shows a high charge rate of 25C (10 A/g) in NIBs, reducing the battery recharge time to 2.4 min.”

The research team expects these polymeric pyrazine-based cathodes will make a highly efficient, ultra-stable and universally affordable rechargeable battery, which will give way to broad application – from the handheld smart phone, to the Swiss Kuhn Schweiz AG dumptruck!

For additional information:

Mao, M. , Luo, C. , Pollard, T. P., Hou, S. , Gao, T. , Fan, X. , Cui, C. , Yue, J. , Tong, Y. , Yang, G. , Deng, T. , Zhang, M. , Ma, J. , Suo, L. , Borodin, O. and Wang, C. (2019), A Pyrazine?Based Polymer for Fast?Charge Batteries. Angewandte Chemie, Int. Ed. DOI: 10.1002/anie.201910916



Related Articles:
The Battery Revolution
Reversible Chemistry Clears Path for Safer Batteries
Wang Group Develops Highly Reversible 5.3 V Battery
Nanostructure of carbon and metal could solve potassium-battery puzzle
UMD Engineers Discover Root Cause of Solid-State Battery Failure
Researchers’ Battery Breakthrough Improves Performance at Lower Costs
Dutt is PI on NSF-Funded Quantum Research Grant
Maryland Engineers Awarded Grants to Address Humanity's Grand Challenges
Big Ten Network spotlights Maryland Engineering
Selected Publications from NanoCenter's AIM Lab and FabLab

October 26, 2019


«Previous Story  

 

 

Current Headlines

CALCE Receives ULRI Research Award for Thermal Runaway Prevention in Batteries

World Premiere of Video on Battery Safety by Prof. Michael Pecht at OECD

Former MEI2 energy seed grant discusses 3D printing of advanced ceramics

UMD, Partners Receive $31M for Semiconductor Research

Brick by Brick: The Clark School Celebrates LGBTQ+ Engineers

Maryland Engineering and Partners Win $26M to Develop Better HVACR Systems and Fight Climate Change

Researchers’ Battery Breakthrough Improves Performance at Lower Costs

ION honored by federal and state officials

Ghodssi Honored With Gaede-Langmuir Award

Maryland Engineers Recognized with UMD Faculty Honors

 

Colleges A. James Clark School of Engineering
The College of Computer, Mathematical, and Natural Sciences

Communicate Join Email List
Contact Us
Follow us on TwitterTwitter logo

Links Privacy Policy
Sitemap
RSS

Copyright The University of Maryland University of Maryland
2004-2024