August 8, 2020 UMD Home FabLab AIMLab


Image: A schematic illustration of the formation of chemical bonding stabilized carbon-small sulfur composite (provided by C. Luo).

Image: A schematic illustration of the formation of chemical bonding stabilized carbon-small sulfur composite (provided by C. Luo).

 

With the increasing demand for sustainable and affordable energy, the ongoing development of batteries with a high energy density is vital. Lithium-sulfur batteries have attracted the attention of academic researchers and industry professionals alike due to their high energy density, low cost, abundance, nontoxicity and sustainability. However, Li-sulfur batteries tend to have poor cycle life and low energy density due to the low conductivity of sulfur and dissolution of lithium polysulfide intermediates in the electrolytes, which are generated when pure sulfur reacts with Li-ions and electrons.  

To circumvent these challenges, a multi-institutional research team led by Chunsheng Wang at the University of Maryland has developed a new chemistry for a sulfur cathode, which offers increased stability and higher energy of Li-sulfur batteries. Chao Luo - an assistant professor of chemistry and biochemistry at George Mason University - served as first author on the study, published in the Proceedings of the National Academy of Sciences (PNAS) on June 15.

Numerous conductive materials such as graphene, carbon nanotube, porous carbon and expanded graphite were used to prevent the dissolution of polysulfides and increase the electrical conductivity of sulfur cathodes - the challenge here is encapsulating the nano-scale sulfur in a conductive carbon matrix with a high sulfur content to avoid the formation of polysulfides.

"We used the chemical bonding between sulfur and oxygen/carbon to stabilize the sulfur," Luo said. "This included a high temperature treatment to vaporize the 'pristine' sulfur and carbonize the oxygen-rich organic compound in a vacuum glass tube to form a dense oxygen-stabilized sulfur/carbon composite with a high sulfur content."

In addition, scanning electron microscope (SEM) and transmission electron microscopy (TEM) instruments, X-ray photoelectron spectroscopy (XPS) and pair distribution function (PDF) were used to illustrate the reaction mechanism of the electrodes.

"In the dense S/C composite materials, the stabilized sulfur is uniformly distributed in carbon at the molecular level with a 60% sulfur content," Wang said. "The formation of solid electrolyte interphase during the activation cycles completely seal the sulfur in a carbon matrix, offering superior electrochemical performance under lean electrolyte conditions."

Li-sulfur batteries have applications in household and handheld electronics, electric vehicles, large scale energy storage devices and beyond.

For additional information:

Luo, C. et al. (15 June 2020). A chemically stabilized sulfur cathode for lean electrolyte lithium sulfur batteries. PNAS. DOI: 10.1073/pnas.2006301117



Related Articles:
UMD researcher receives new $1M Vehicle Technology Award
UMD Researchers Design ‘Open’ Lithium-ion Battery
Advance made towards next-generation rechargable batteries
What’s Next for Next-Gen Batteries?
The Battery Revolution
Reversible Chemistry Clears Path for Safer Batteries
Wang Group Develops Highly Reversible 5.3 V Battery
Nanostructure of carbon and metal could solve potassium-battery puzzle
UMD Engineers Discover Root Cause of Solid-State Battery Failure
Advance could yield safer, longer-range electric car batteries

June 15, 2020


«Previous Story  

 

 

Current Headlines

Joy Chao Receives 2020 MRS Silver Graduate Student Award

UMD researcher receives new $1M Vehicle Technology Award

Legacy through Impact: Dr. Darryll J. Pines

Rapidly evolving ‘smart marble’ sensors hold promise for monitoring pharmaceutical industry bioreactors and beyond

Sulfur Provides Promising 'Next-Gen' Battery Alternative

Further Strides to Beat the Virus

Pines: Stand in Solidarity, Unite Against Injustice

Promoting Diversity and Addressing Unconscious Bias

MSE Alum Awarded NSF Graduate Research Fellowship

UMD Researchers Design ‘Open’ Lithium-ion Battery

 

Colleges A. James Clark School of Engineering
The College of Computer, Mathematical, and Natural Sciences

Communicate Contact Us
Contact the Webmaster
Google+
Follow us on TwitterTwitter logo

Links Privacy Policy
Sitemap
RSS

Copyright The University of Maryland University of Maryland
2004-2020