June 2, 2020 UMD Home FabLab AIMLab



Fischell Department of Bioengineering (BioE) researchers have merged living cells with nanotechnology to develop an integrated molecular processing network that sheds light on how bioengineers might further bridge the communication gap between biology and electronic microfabricated devices.

In their Nature Communications paper published in mid-October, members of BioE Robert E. Fischell Distinguished Professor and Chair William Bentley’s research group addressed a question bioengineers have long contended with: how can scientists more effectively tap into the wealth of information that exists at the molecular level?

Advances in nanotechnology have provided bioengineers new ways to sample molecular space, but living cells have the capability to take things a step further in that they can identify molecules within complex environments and trigger functions.

When appropriately accessed, molecular information can provide bioengineers with invaluable feedback on biological systems, their componentry, and their functions.

To access this information, bioengineers have long worked to develop nano- to micro-scaled tools that engage with biological systems through monitoring and interacting at the molecular level. One such tool is synthetic biology, through which engineers “rewire” cells to survey molecular space – a feat that is possible because cells have sophisticated capabilities to recognize, amplify, and transduce chemical information.

Cells also “present a potential interface between chemically based biomolecular processing and conventional vectors of information flow, such as electrons and protons,” the group noted in Nature Communications.

Put simply, cells serve a crucial role as conveyors of molecular communication between biological systems, such as the gastrointestinal tract, and microdevices, such as stents.

Building on this, Bentley’s research team developed a system in which a small network of surveyor cells collectively gathers information about the environment in which they live. Then, when they detect a target signal molecule, they synthesize “reporter” proteins onto their outer surface. One of the proteins is a fluorescent protein, the other facilitates binding to magnetic nanoparticles. In this way, these surveyor cells can be introduced to a particular biological niche and can then be collected with a magnet where their fluorescence will indicate the concentration of the analyte molecule they were engineered to find.

Eventually, this will enable “smart” bacteria that seek out pathogens or wounds that are revealed by molecule markers they emit. When the “smart bacteria” encounter pathogens or wounds, they synthesize and deliver a therapeutic at the right spot and the right time, and in the correct dose to counter the problem.

Bentley’s team consists of BioE/Institute for Bioscience and Biotechnology Research colleague Professor Gregory Payne, as well as collaborators Dr. John March (Associate Professor, Cornell University) and Dr. Matthew Chang (Associate Professor, National University of Singapore) and their research groups. The team's work is funded primarily by the U.S. Defense Threat Reduction Agency (DTRA).

BioE Ph.D. student Jessica Terrell, a member of Bentley’s Biomolecular and Metabolic Engineering Laboratories, served as lead author of the Nature Communications paper. 



Related Articles:
Maryland Engineers Open Door to Big New Library of Tiny Nanoparticles
Micro-reactor Produces Quality Nanoparticles
High Temperature Thermal Shocks Increase Stability of Single Atom Catalysts
Marina Leite to Give a Plenary Talk at International Conference in Belgium
Gary Rubloff keynote speaker at IEEE nanotechnology conference
Decade of TMV research leads to never-before-seen microsystems for energy storage, biosensors and self-sustaining systems
Ghodssi, Bentley receive NSF EAGER grant to develop ingestible capsules for medical diagnosis

November 12, 2015


«Previous Story  

 

 

Current Headlines

MSE Alum Awarded NSF Graduate Research Fellowship

UMD Researchers Design ‘Open’ Lithium-ion Battery

UMD Research Lab Receives ARO Grant to Investigate Reconfigurable Nanoparticle Assemblies

Two Engineers Among 2020-2021 Distinguished Scholar-Teachers

2020 Undergraduate Honors and Awards

Cleaning Natural Methane for Better Access to Renewable Energy

New, superfast method for ceramic manufacturing could open door to AI-driven materials discovery

Advance made towards next-generation rechargable batteries

Become a Contender: Electric Racecar

Terrapin 'Works' Toward Relief Efforts

 

Colleges A. James Clark School of Engineering
The College of Computer, Mathematical, and Natural Sciences

Communicate Contact Us
Contact the Webmaster
Google+
Follow us on TwitterTwitter logo

Links Privacy Policy
Sitemap
RSS

Copyright The University of Maryland University of Maryland
2004-2020